Sprachen und Automaten – Unterrichtseinheit

Theoretische Informatik: Reguläre Sprachen und endliche Automaten

Ein Beitrag von Johann-Georg Vogelhuber

Die theoretische Informatik bildet mit endlic ar Automaten und formalen Sprachen das Grundgerüst für moderne Programmit arachen. Mit de ser Unterrichtseinheit können sich ihre Schülerinnen und Schüler die Grundagen de es Themenge aus mithilfe von handlungsorientierten Situationen und differenzierten Aufgaben erarbeiten. Unterstützt wird die Erarbeitung durch das verlinkte Hilfematerial und eine interntiver oftware zum Erstellung von endlichen Automaten.

KOMPET NZPROFIL - TERRICHT JEINHEIT

Klassen fe: k. II

Defer: 19–15 Unterrichtsstunden

Lern, ele: Die Lernenden ... 1. entwerfen Zustandsdiagramme endlicher

Automaten zur Erkennung von korrekten Eingaben, 2. unterscheiden deterministische und nichtdeterministische endliche Automaten

und wandeln diese ineinander um.

Kompete. Modellieren und Implementieren

Themenbereiche: Theoretische Informatik, Formale Sprachen, Reguläre Sprachen

und Grammatiken, deterministische und nichtdeterministische

endliche Automaten, deterministische Kellerautomaten

Auf einen Blick

Benötigt

☐ Tablet/Laptop/PC pro Schüler/in oder pro Schülerpaar

□ Internetzugang

Einstieg

Thema: Endliche Automaten mit Ausgabe

M 1 Wie kann man einen Automater formal berreiben?
M 2 Formale Definition für endliche omaten met e

M 3 Übungsaufgaben: Mealy-Automaten

Erarbeitung

Thema: Endliche determ istische und nichtdeterministische Automaten
M 4 Wie können E-Mail-Adre ven automatisiert überprüft werden?
M 5 Übungsac Taben. Deterministische Automaten
M 6 Reguläre Sprach und Grammatiken
M 7 Übungsaufgaben: Reguläre Sprachen und Grammatiken

M 8 Vie.. sministische Automaten – Mit welchen Regeln lässt sich

en e Firew ... en?

M 9 Äqu alaz von N A und DEA – Die Potenzmengenkonstruktion

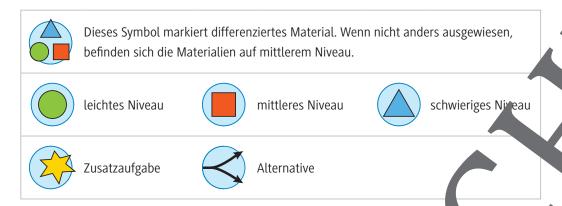
Verting (opt heal)

Thema: Grenzen endlicher Automaten und regulärer Sprachen

menzen endlicher Automaten und regulärer Sprachen

M 11 Endliche Kellerautomaten – Wie kann man korrekte Klammerausdrü-

cke erkennen?



Sicherung

M 12 Bist du fit in regulären Sprachen und endlichen Automaten?

enötigt: Kahoot!-Quiz: https://raabe.click/Kahoot-Lernerfolgskontrolle

Erklärung zu den Symbolen

M 2

Formale Definition für endliche Automaten mit Ausgab

Echte Automaten lassen sich durch ein theoretisches Modell beschreiben. Man bezeich et es endlicher Automat mit Ausgabe. Das Modell wurde 1955 in dem Artikel A Method for S Sequential Circuits von dem US-amerikanischen Mathematiker George H. Mealy ver fentlicht.

Aufgabe 1

Vervollständigen Sie die folgende Definition mithilfe der verlinkten Quellen

Definition: Endlicher Automat mit Ausgabe

Endliche Automaten

Ein endlicher Automat mit Ausgabe (https://raabe.click/Info-E	<u>dliche-Automaten</u>) ist e
Tupel (Q, Σ , Ω , δ , λ , q ₀).	
Dallas inte	

•	a ale	Dies sind die verschledenen	,
	die der Auto	mat annehmen kann. Diese Menge mass htleer und e	

∑ das		Die	s ist der Ze	envorrat, der für d	ie
	zur Verfügun	g steht Dieg	evie nichtlee	ere liche Menge	

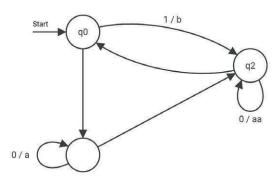
•	Ω das	Auch Ω ist eine nichtlee, endliche Meng	e.
	Die in Ω enthalten Zeichen sind die mögl	n Zei	

•	δ die	Di lse Funk	มงก ordnet je	dei Paa	ar aus Eingabezeic	hen
	und Zustand genau einen		zu.			

•	λ die	Diese Fu.	tion legt ful	des Paar aus Eingabezeichen
	und Zustand fest, welches	ban auc Y		werden soll.

•	$q_0 \in U$ ist der _					
Fin	ı endlicher Autoi	mat mit Ausgabe v	/	Lauch Mealv-Auton	nat genannt	(https://raabe

Mealy-Automat


Info-Mealy-Automat)

Aufgabe 2

Im Folgenden sind ein Über sgraph, one Übergangsfunktion sowie eine Ausgabefunktion gegeben. Very ndigen Sie di Tabellen und den Graphen so, dass die Tabellen und der Graph denselbe Auton n beschreib

δ	U	1
	q_1	
q_1		72
q_2		

٨	0	1
	а	
q_1		b
q ₂		b

Grafik: Johann-Georg Vogelhuber

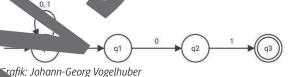
© RAABE 202

M 8

Nichtdeterministische Automaten – Mit welchen Regeln lässt sich eine Firewall umsetzen?

Anwendungssituation

Da es in letzter Zeit häufiger zu einer missbräuchlichen Nutzung der Rechner in den amputerräumen gekommen ist, sollen die eingegebenen Web-Adressen auf dem Proxy-Server der Sc. Gefiltert und bei Bedarf geblockt werden. Aus technischen und datenschutzrecht hen Gründen dan die URL überprüft werden. Enthält die URL eine der vorgegebenen Zeichenken so vird sie. Eine Unterscheidung nach Groß- und Kleinschreibung findet nicht statt. Pro URL soll aus inschlägige Substrings geprüft werden. Dazu soll zuerst ein Automat entwickelt werden, um ein Konzafür die Programmierung dieses Filters zu entwickeln.


Aufgabe 1: Analyse

Lesen Sie sich die Situationsbeschreibung durch und beworten dana den Fragen:

- Welche Informationen sind in der Situationsbeschreibung
- Welche Daten fehlen noch?
- Welche Schritte sind zur Durchführung der ufgabe notwendig?
- Welche Schwierigkeiten könnten bei der Besteitung

Infotext - Nichtdeterministische endliche Automaten

Die bisher betrachteten Automaten werden als deterministische endliche Automaten (DEA) bezeichnet. Das Wort deterministische bedeutet hier, dass für jeden Zustand mit jedem Eingabezeichnet. Das Verhalten des Automaten eindeutig festgelegt ist.

Der Automat hat keine Wahl, welche Anweisung auszuführen ist. In estheoretischen Informatik ist neben dem DEA auch das Modell des **nichtdeterministischen endlicht tomaten** (**NEA**) von Bedeutung. Die Abbildung zeigt so einen Automaten. Im Gegensatz zu einem DEA kann es mehr re Übergen wit dem gleichen Eingabezeichen von einem Zustand aus geben. D. h. der Weg durch den Übergangsgraphen it durch die En gabe nicht länger eindeutig bestimmt.

Der NEA akzeptiert eine Eingabe, wenn mindestens ner der möglichen Werte in einem der akzeptierten Zustände (Endzustände) endet.

Aufga

Beschreib sie, elche sprache der oben abgebildete Automat akzeptiert und erstellen eine entsprechende Granatik. Vergleichen Sie ihre Lösung mit ihrem Ergebnis zu Aufgabe 6 von M 7.

Aufgabe

Vorlage Aufgabe 2

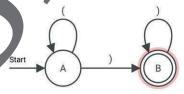
Erstellen Siè die oben beschriebene Situation einen NEA. Verwenden Sie dazu mindestens drei unterschiedlich Schlüsselwörter. Nutzen Sie das Tool <u>flaci.com/autoedit</u>.

Tipp darf können sie die Vorlage verwenden: https://raabe.click/Flaci-Vorlage-Aufgabe2

M 11 Endliche Kellerautomaten – Wie kann man korrekte Klammerausdrücke erkennen?

Für die Überprüfung von kontextfreien Sprachen muss das Konzept des endlichen deterministischen Autor aten erweitert werden. Dazu wird ein DEA um einen Stack (Kellerspeicher) ergänzt. Diese Art von Automat bezeichnet man auf Gellerautomat oder Stackmachine. Der Stackspeicher enthält Inhalte des Kelleralphabets. Es ist immer nur ein Zugriff auf das berste Element möglich. Mit den Zugriffsmethoden push und pop können Elemente auf den Stapel gelegt og genommer, weit

Definition


Ein **Kellerautomat** wird durch ein Tupel $A = (Z, \sum, K, z_0, Z_E, \delta, \lambda)$ festgelegt. Dabei sind die vezeichnungen analog denen eines DEA. Zusätzlich ist K das Kelleralphabet. Dieses Alphabet besteht aus einem end ihen Zeichenvorrat. Das ymbol $\# \in K$ das **Anfangssymbol**. Dieses Symbol ist immer das unterste Symbol des Kellerspeiches. Die Zustandste sgangsfunktion ordnet jedem Zustand, Eingabezeichen und Kellerinhalt einen Folgezustand zu Die Aus efunktion λ dnet jedem Zustand, Eingabezeichen und Kellerinhalt zu.

Ein Kellerautomat **akzeptiert** ein Eingabewort, wenn am Ende einer der akzeptierten zwände erreicht wird und der Kellerspeicher am Ende leer ist.

Beispiel

Um die Sprache der korrekten Klammerausdrücke zu erkennen, wird der for automat benötigt. $Z = \{A, B\}, \Sigma = \{(,,)\}, K = \{(\}, z_0 = A, Z_E = \{B\})$ Übergangsfunktion kann am besten mit einer Tabelle beschrieben werden:

Zustand	Eingabe	Keller	Folgezusta -
А	(#	A push (
А	((A ph(
В)	(bok
В)	(,Jop

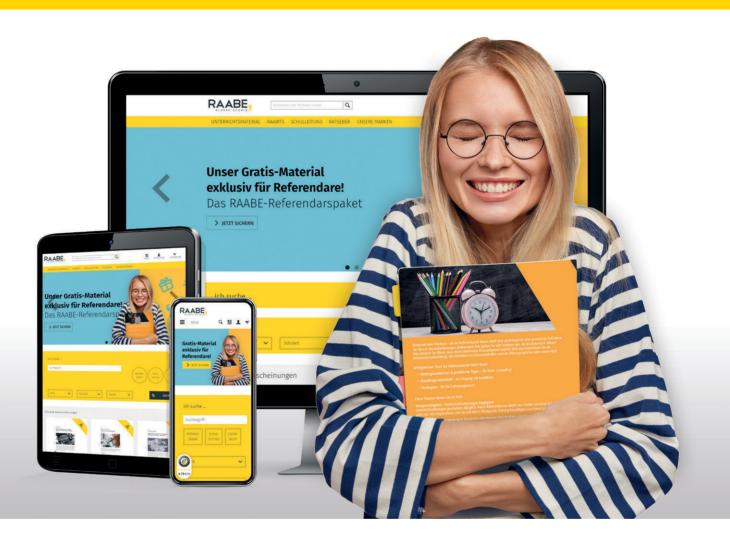
Grafik: Johann-Georg Vogelhuber

Aufgabr 1

Entwicken Sie ein b deterministischen endlichen Kellerautomaten, der wohlgeformte Klammerausdrück benran kann. Den der Automat soll alle Ausdrücke akzeptieren, bei denen die Anzahl der öffnenden anmern mit der Anzahl der schließenden Klammern übereinstimmt.

Aufgab

Geben Sie et Grammatik für die in Aufgabe 1 beschriebene Sprache an.


fgabe 3

En. sie eine möglichst einfache kontextfreie Grammatik, mit der alle Terme erzeugt werden können, die aus Klammern, Ziffern und den vier Grundrechenarten bestehen. Verwenden sie dazu das Onlinetool flaci.com. Kontrollieren sie ihr Ergebnis mithilfe der Simulationsfunktion.

Sie wollen mehr für Ihr Fach?

Bekommen Sie: Ganz einfach zum Download im RAABE Webshop.

Über 5.000 Unterrichtseinheiten sofort zum Download verfügbar

Webinare und Videos
für Ihre fachliche und
persönliche Weiterbildung

Attraktive Vergünstigungen für Referendar:innen mit bis zu 15% Rabatt

Käuferschutz
mit Trusted Shops

Jetzt entdecken: www.raabe.de

