Reelle Funktionen und Arkusfunktionen

Alfred Müller

© RapidEye / E+ / Getty Images Plus

Während die Win elfunktinnen Sinus Kosinus und Tangens im Unterricht meist sehr ausführlich behand Twer zur, zankt sich die Anwendung von deren Umkehrungen Arkussinus, Arkuskosinus und Arkustangens meist auf einen Tastendruck am Taschenrechner. Das von der Materia intet Ihnen daher Übungsaufgaben, die Ihre Schülerinnen und Schuler tiefer in die Welt der Arkusfunktionen eintauchen lassen. Dabei bestimmen sie Definitions- sowie wertebereiche und betrachten das Monotonieverhalten von Funktionen. Statterknüpfen eelle Funktionen mit den Arkusfunktionen, bestimmen die zugeholigen Instantom da Ableitungen und zeichnen die Funktionsgraphen.

Reelle Funktionen und Arkusfunktionen

Oberstufe (weiterführend/vertiefend)

Alfred Müller

Reelle Funktion, Arkustangens und Arku	skosinus	1
Reelle Funktion und Arkussinus		2
Reelle Funktion und Arkustangens		3
Exponentialfunktion und Arkustangens		4
Lösungen		5

Die Schülerinnen und Schü

- Verwendung von Arkusfunktion
- Verknüpfung von reellen Proktionen mit Ark fanktionen
- Ableiten von Arkusfunktion in
- Integrieren von Arkusfunktio en
- Kurvendiskussionen

Überblick:

Legende der Abkürzungen:

Ab Arheitsblatt

Thema	Materia	Methode
Verknüpfung von Funktionen	M1 - M4	AB
Arkussinus	MI,	
Arkuskosinus	M1	AB
Arkustangens	M1	AB
Exponentialfunktion	M4	AB

Kompetenzprofil:

Inhalt: Arkusfur tion, Arkussinus, Luskosinus, Arkustangens, reelle Funk-

tion, Exp nemeroktion, Verknüpfung von Funktionen, Integral, Flächenberechnung, Abstraumg, Differenzieren, Monotonieverhalten

Kompetenzen: Mathematisch ingumentieren und beweisen (K1), Probleme mathe-

h lösen (13) mathematische Darstellungen verwenden (K4), mit synbolischen zormalen und technischen Elementen der Mathe-

matik ann (K5), kommunizieren (K6)

Differ enzier

Matc 'al	M1	M2	M3	M4
Ni eau				

Reelle Funktion, Arkustangens und Arkuskosinus

M1

- 1. Gegeben ist die in $D_f =]0;1]$ definierte Funktion f durch ihre Gleichung $y = f(x) = \frac{\sqrt{1-x^2}}{x}$ mit Graphen G_f .
 - a) Zeigen Sie, dass die Funktion f streng monoton ist und berechne Sie eine Gleichung der Ableitungsfunktion f'. Bestimmen Sie dann das Schalten in f und f' an den Grenzen des Definitionsbereiches.
 - b) Skizzieren Sie den Graphen G_f anhand einer Wertet belle mit den x-Werten $x = \frac{1}{5} \cdot k$ und k = 1, 2, 3, 4 in ein rechtwinkliges Koordina system. Verwenden Sie: 1 LE = 4 cm.
 - c) Zeigen Sie, dass $f(x) \ge \frac{1}{x} 1$ für $x \in D_f$ gilt Liten Sie e. Abschätzung für das Integral $\int_a^1 f(x) dx$ her und berechnen Si dann der Grenzwert des Integrals für $a \to 0$. Was kann man über die Fläche aussagen, die de Graph G_f mit den Koordinatenachsen bildet?
- 2. Die Funktionen g und h sind durg gegeben:

$$y = g(x) = \arctan f(x) = \arctan \frac{\sqrt{1-x}}{x}$$
 has $D_g = D_f$ und
 $y = h(x) = \arccos x$ mit $D_g = D_f$

Bilden Sie die Ableitungsfunk 'one' g' un 'n' und folgern Sie daraus den Zusammenhang zwischen den <u>Fu</u>nktionen und h.

3. Die Funktion havann naherungsweise ersetzt werden durch die ganzrationale Funktion p mit

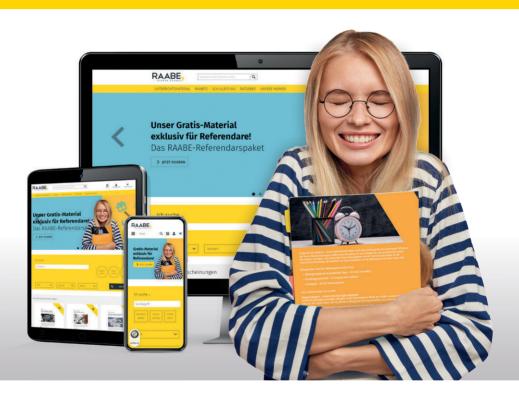
$$p: x \mapsto p(x) = h(0) + h'(0) + \frac{x^2}{2} \cdot h''(0), x \in D_h$$
, p und Graphen G_p .

- a) Festimmer, p den Funktionsterm p(x) und tragen Sie den Graphen G_p in obies Koordinate system ein.
- b) Letimmen Sie en Unterschied zwischen $g\left(\frac{1}{2}\right)$ und $P\left(\frac{1}{2}\right)$.

'ergleichen Sie dann $A_1 = \int_0^{\frac{1}{2}} g(x) dx$ und $A_2 = \int_0^{\frac{1}{2}} p(x) dx$.

Sie wollen mehr für Ihr Fach?

Bekommen Sie: Ganz einfach zum Download im RAABE Webshop.



Über 5.000 Unterrichtseinheiten sofort zum Download verfügbar

Webinare und Videos
für Ihre fachliche und
persönliche Weiterbildung

Attraktive Vergünstigungen für Referendar:innen mit bis zu 15% Rabatt

Käuferschutz mit Trusted Shops

Jetzt entdecken:

www.raabe.de