
Rationale Funktionen und Exponentialfunktionen

Vermischte Übungen mit Funktionenscharen: Gebrochenrationale Funktionen, Exponentialfunktion and ein Krei.

Alfred Müller

In sechs umfangrichen Üb nasaufgaben beschäftigen sich die Schülerinnen und Schüler mit verschiedenen wettignen und Funktionenscharen. Gebrochenrationale Funktionen kommen dabei ebenso versie Exponentialfunktionen. Auch ein Kreis bzw. Halbkreis wird in Form einer von Einktion na ein Augenschein genommen. Die Aufgaben drehen sich um die Bestimmung von erumptoken, Extrem- und Wendestellen sowie um das Berechnen von Flächen shalten und Vormen.

© RAABE 2024

KOMPETENZPROFII

Klassenstufe: 11/12/13

Kompetenzen: Mathematisch argumentieren und beweisen mathematisch

Darstellungen verwenden, mit symbolische form en untechnischen Elementen der Mathematik umge. Problem-

lösekompetenz

Methoden: Übung, Diskussion

Thematische Bereiche: Gebrochenrationale Funktion, Exp. entialfunktio Wurzel-

funktion, Kreisgleichung, Pabel, Waspunkt Hochpunkt,

Tiefpunkt, Differenzialrechnung tegralrechnung

Fachliche Hinweise

Die Jugendlichen sind in der Lage, ver der Studen en zu differenzieren und zu integrieren und Kurvendiskussionen durchzuft, en sowie Gierchungen zu lösen. Der Schwerpunkt der Aufgaben liegt dabei auf gebrochenratie alen Funktionen und Funktionenscharen, doch beschäftigen sich einzelne Aufgaben auch mit V. 201- oder Exponentialfunktionen.

Auf einen Blick

Gebrochenration Funkt nentialfunktion und ein Kreis

M 1 Aufga.

Erk, rung zu C. oolen

Aufgaben M 1

1. Flächen und Volumina

- a) Gegeben ist die Funktion f durch die Zuordnung $y = f(x) = \sqrt{5}x$ mit Granden fen G₅. Die Tangente im Kurvenpunkt $B(5|y_B)$ und die x-Achse begrenzen ein Funen stück A. Berechnen Sie den Inhalt dieses Flächenstücks.
- b) Jetzt ist die Funktionenschar f_a durch ihre Gleichung y=f_a(x)=√c ∈ R⁺ und Graphen G_a festgelegt.
 Im Kurvenpunkt P(a|y_p) wird die Tangente t an den Graphen G_a gelegt. Gebosie den Schnittpunkt dieser Tangenten mit der x-Achse in Ablangigkeit von aan.
- c) Das vom Graphen G_a , der Tangente im Punkt P und der x-zuse begrenzt. Flächenstück rotiert um die x-Achse. Zeigen Sie: Die zur xuchse senkt die Eberge bei x = 0 zerschneidet den Rotationskörper in zwei volumengle. Teilkörper.
- d) Bestimmen Sie dann den Wert für a so, was das Volumen des beschriebenen Rotationskörpers den Wert $V=4.5\pi\,VE$ b sitzt.
- 2. Gegeben ist die Funktion f durch ihre Gleithung $y = f(x) = \frac{\lambda}{\delta(x-2)} \frac{-27x+54}{\delta(x-2)}$ mit Grapher G_{ϵ} und maximaler Definitionsmenge D_{ϵ} .

- b) Berechnen Sie Koordinaten und A. der Extrempunkte und des Wendepunktes.
- c) Zeichnen Sie den Graphen G_f anhand ver Wertetabelle im Bereich I = [-8; 8].
- d) Die Tangente t und die Sie nan der net diven Nullstelle N bilden mit der y-Achse ein Dreieck. Bestimme Sie des Sieheninhalt dieses Dreiecks.

- 3. Gegeben ist die Funktionenschar f_a durch ihre Gleichung $y = f_a(x) = \frac{x^2 + a}{x^2}$ $a \in \mathbb{R}$ Definitionsmenge $D = \mathbb{R} \setminus \{0\}$ und Graphen G_a .
 - a) Zeichnen Sie den Graphen G_2 für a = 2 einschließlich seiner Asymptotism Intervall $I = \overline{\ \ \ \ \ } -5; 5\overline{\ \ \ \ }$.
 - b) Berechnen Sie den Inhalt A(b) derjenigen Fläche, die der Grap! G_2 zwist ien und x = b (b > 1) mit der x-Achse einschließt. Untersuchen Sie dann $A_2(b)$.
 - c) Die Tangente im Kurvenpunkt $P(2|y_p)$ bildet zusammen mit den ken linatenachsen ein Dreieck. Bestimmen Sie a so, dass dieses Γ eieck extremalen in cheninhalt besitzt. Welcher Art ist der Extremwert und wie q. Γ ist dieser Flösheninhalt?

- 4. Gegeben ist die in $D = \mathbb{R}$ definierte Schar von Functionen x_a burch ihre Gleichung $y = f_a(x) = \frac{x ax^3}{x^2 + 1}$ mit dem Graphen G_a .
 - a) Berechnen Sie den Parameterwert a so, dass der zugehörige dasch an der Stelle x = 1 die Steigung m = 2 besitzt.
 - b) Nun sei a = 1.
 Berechnen Sie für den Graphen G₁ aus Schnittpunkte mit den Koordinatenachsen und alle Asymptoten. Liegt eine Symmeth. vor? Geben Sie auch die Definitionsmenge für a = 1 an.
 - Bestimmen Sie Art und Lage de. Sytremwerte sowie die Koordinaten der Wendepunkte.
 - d) Zeichnen Sie den Grage G im Interval= [-4; 4] (1 LE = 2 cm).
 - e) Berechnen Sie die Kooro naten von Punkte des Graphen G_1 , die von der schiefen Asymptote den größten Astand, esitzen.

- 5. Gegeben ist ein kre. $(x^2 + y^2)^2 = (x^2 + y^2)^2$ der in den Punkten $A(0,5r|y_1)$ und $B(0,5r|-y_1)$ von einer Pau hel mit gur Gleichung $y = \pm c \cdot \sqrt{d-x}$ berührt wird.
 - a) Bestimmen d'e Parameter c und d in Abhängigkeit von r.
 - b) Word die Kreiste e und das von Parabel und Kreis begrenzte sichelförmige Geviet um Achsen dert, entsteht ein eiförmiger Körper, dessen Volumen sich aus einem Kugete innent und einem Rotationsparaboloid zusammensetzt.
 - erechnen Sie 📑 S Volumen des Kugelsegments und des Paraboloids.
 - hes Volumen hat so ein "Ei", wenn es 6 cm lang ist?

Mehr Materialien für Ihren Unterricht mit RAAbits Online

Unterricht abwechslungsreicher, aktueller sowie nach Lehrplan gestalten – und dabei Zeit sparen. Fertig ausgearbeitet für über 20 verschiedene Fächer, von der Grundschule bis zum Abitur: Mit RAAbits Online stehen redaktionell geprüfte, hochwertige Materialien zur Verfügung, die sofort einsetz- und editierbar sind.

- ☑ Zugriff auf bis zu **400 Unterrichtseinheiten** pro Fach
- Oidaktisch-methodisch und fachlich geprüfte Unterrichtseinheiten
- Materialien als **PDF oder Word** herunterladen und individuell anpassen
- ✓ Interaktive und multimediale Lerneinheiten
- Fortlaufend neues Material zu aktuellen Themen

Testen Sie RAAbits Online 14 Tage lang kostenlos!

www.raabits.de

