Untersuchung einer Exponentialfunktion - Eigenschaften und Anwendungsprobleme

Untersuchung einer Exponentialfunktion

Gymnasium

Mathematik

11. | 12. | 13. Klasse

4 - 6 Unterrichtsstunden

Beschreibung

Funktionsuntersuchungen mit Eigenschaftsbestimmungen gehören zu den Standardaufgaben des Analysis-Unterrichts der Oberstufe. Ebenso können Figuren zwischen den Graphen der Funktion und der x-Achse gelegt werden, sodass der Flächeninhalt maximal wird. Die Funktionsuntersuchung erweitert der Beitrag damit um Extremalwertaufgaben. Nimmt man zum Graph einer Funktion noch den Graphen der Ableitungsfunktion hinzu, so kann man nicht nur Flächenberechnungen zwischen dem Graphen der Ausgangsfunktion und der x-Achse, sondern auch zwischen den Graphen von Funktion und Ableitungsfunktion durchführen. Der Graph der Exponentialfunktion bildet bei einer weiteren Aufgabe den Querschnitt eines Körpers, bei dem die Jugendlichen bestimmte Größen berechnen. Ebenso bildet dear in Richtung der x-Achse gestreckte Graph den Querschnitt einer Steilküste. Anwendungsaufgaben stellen bestimmte Anforderungen an diese Steilküste, welche die Lernenden lösen.
Leseprobe ansehen
# exponentialfunktion
# extremstelle
# extremwertproblem
# stammfunktion
# tangente
# flächenberechnung
# volumen
# rotationskörper
# streckung
# umwandlung von einheiten

0,00 €

Für Schulen & Fachschaften

Egal ob einzelne Fachschaft oder komplette Schule: Mit unseren flexiblen Abo-Modellen finden wir den richtigen Weg, um den Unterricht von Ihnen und Ihres Kollegiums einfach zu gestalten.